
* Fermi National Accelerator Laboratory 

FERMILAB-Pub-78121..THY 
February 1978 

Diffraction Scattering and the Parton Structure of Hadrons 

HANNU I. MIETTINEN* 
Fermi National Accelerator Laboratory, Batavia, Illinois 60510 

and 

JON PUMPLIN+ 
Department of Physics, Michigan State University, East Lansing, Michigan 48824 

ABSTRACT 

We apply parton model concepts to the “soft” (small momentum transfer) 

processes which make up the majority of the hadronic total cross secion. 

Diffraction is calculated as the shadow of these soft processes. We obtain an 

attractive picture of the essential features of total, elastic and diffractive- 

inelastic scattering. In particular, the rather large cross section for inelastic 

diffraction, which is observed experimentally, results from fluctuations in the 

distribution of the wee partons which initiate interactions. These fluctuations lead 

to diffractive production by the mechanism of Good and Walker. The observed 

peripheral character of diffraction as a function of impact parameter, the absence 

of a forward dip in do/dt dm2, the correct integrated cross section, and the correct 

small-t slope of diffraction all follow naturally in our approach. 
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I. INTRODUCTION 

Consider the interaction of a hadronic particle with a hadronic target at high 

energy. There is strong production of a rich variety of inelastic states. Through s- 

channel unitarity, this production implies a large imaginary elastic amplitude at 

impact parameter b ; 1 fm, which gives rise to the forward peak in do/dt for 

elastic scattering. In the language of optics, the forward peak is thus due to 

“diffraction,” or “shadow scattering.” 

Hadrons are composite objects. Our incident high energy particle is therefore 

a quantum-mechanical superposition of states which contain various numbers, types 

and configurations of constituents. The various states in this superposition are 

absorbed in different amounts by the target, so the superposition of states which 

arises from shadow scattering is not simply proportional to the incident one. Hence 

shadow scattering leads not only to elastic scattering, but also to production of 

inelastic states which have the same internal quantum numbers as the incident 

particle. This fundamental basis for inelastic diffraction has been known for a long 

time.1 

Inelastic diffraction arises from the differences in absorption probabilities for 

various components of the hadron’s wave function. The fact that these absorption 

probabilities must lie between 0 and 1 leads to an upper bound, 

odiff(b) +u .,(b) ; tittot(b), which limits the size of diffractive production at each 

impact parameter.2-3 Measurements of inelastic diffraction at the CERN ISR’ fall 

within a factor of two of saturating this bound.5 This implies a very large spread in 

the interaction probabilities, as has been shown quantitatively by Fialkowski and 

Miettinen.6 Thus, for example, in a head-on pp collision (b q O), there exist some 

arrangementsof the constituents for which the interaction probability is nearly 

zero, and other arrangements for which it is nearly unity. The average of these 

probabilities, which can be deduced from the elastic data, is about 0.75. 
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The large cross section observed for diffractive production raises two major 

questions which we attempt to answer in this paper: 

1. What are the states which diagonalize the diffractive part of the 

S-matrix, 

so that their interactions are described simply by absorption coefficients; and 

2. What causes the large variations in the absorption coefficients at 

a given impact parameter, 

which are implied by the large cross section for diffractive production. 

Our answer to the first question is that the diagonal states are the states of 

the parton model.7 They are characterized by a definite number N of partons, 

which have definite impact parameters zl,...,cN; and definite longitudinal 

momenta, which we describe in terms of rapidities y,,...,yN. The partons are 

structureless “point-like” constituents. (It is attractive to hypothesize that they 

are the valence quarks + sea quarks + gluons of quantum chromodynamics. 

However, we will not make any use of such an hypothesis in this paper.*) 

Interactions in the parton model have a short range in rapidity. This fits the 

observation that two-particle correlations in the central region of rapidity are 

small for rapidity separations 1 yI ‘, 2.8 When two particles scatter at very high 

energy, in the center of mass, only wee partons can interact, because the parton- 

parton interaction is of short range, and the wave functions do not contain 

* 
We assume the parton-parton interactions to be of short range in rapidity. This 
could be true for the effective interactions in QCD--in spite of the spin I 
character of the gluons--because of color confinement effects. 



FERMILAB-Pub-78/21-THY 

partons which move fast in the “wrong” direction. Since the wee partons are 

responsible for initiating the soft hadronic collisions, which build up the diffractive 

cross-sections through unitarity, we see that the global properties of diffraction 

depend on the distribution and interactions of the wee partons alone. Furthermore, 

since hadronic total cross sections are roughly energy-independent, we see that the 

wee parton distributions must be roughly independent of the momenta of the parent 

particles. 

In our search for a physical interpretation of the states which diagonalize the 

diffractive part of the S-matrix (the “bare particle” states of Good and Walker) we 

were led to the parton model approach through the following considerations. 

Firstly, let us recall our basic assumption about the dynamical origin of inelastic 

diffraction, namely, that dissociation processes are regeneration processes. They 

are caused by the fact that hadrons are composite systems, and the different 

components of the wave functions are absorbed in different amounts by the target. 

From this assumption it follows directly that, in order to find states which scatter 

only non-diffractively and--through shadow scattering--elastically, but which do 

not undergo dissociation, we must find states which have no internal structure. 

Consider then a state consisting of a fixed number of constitutents at fixed 

impact parameters and fixed rapidities, 

1 b;,***,$.J; Y ,,“‘, YN > ’ 

Assume, furthermore, that the constituents have no internal structure. Consider 

the collision of this state by an absorbing potential. We see that, since all the 

variables on which the absorption of the state may depend have fixed values, the 

state will be absorbed with a well-defined absorption strength. Since the state 

doesn’t regenerate, and since we assumed diffraction dissociation to be due to 

regeneration, this state is indeed an eigenstate of diffraction. This leads us to 

identify the parton states as the eigenbasis for diffraction, which is our answer to 

question 1. 
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Among the parton states which describe a high-energy hadron, there are some 

which are rich in wee partons, and are therefore likely to interact; while other 

states have few or no wee partons, and correspond to the transparent channels of 

diffraction. This is our answer to question 2. A similar point of view has been 

advocated by Grassberger.’ In more detail, we will show that the fluctuations in 

interaction probability which generate diffractive production arise in three 

different ways: from fluctuations in the number of wee partons; in their rapidities; 

and in their impact parameters. 

The organization of this paper is as follows. In Section II we express the 

above ideas in mathematical form. In Section III we present a simple model which 

incorporates our ideas, and demonstrate that it agrees with the essential 

experimental observations. In Section IV, we use the model to solve a longstanding 

problem regarding the t-dependence of diffractive production. In Section V we 

restate our conclusions, compare our analysis to some previous work, and suggest 

some directions for future work. 

II. OPTICAL MODEL FORMULATION 

To obtain a framework of analysis which is mathematically and physically 

simple, we replace the target particle by an average optical potential. This 

approximation leaves intact the essential physics of the diffraction of the beam 

particle, while simplifying the analysis. 

The beam particle is a linear combination of states which are eigenstates of 

diffraction: 

IB>= 1 CkltJk> , 
k 

ImTIQk> = tkl$k> , 

(1) 

(2) 
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where ImT is the imaginary part of the scattering amplitude operator: 

ImT = 1 - ReS; and the eigenvalue tk is the probability for the state Iqk> to 

interact with the target. These eigenvalues vary, of course, with impact 

parameter. We normalize so that 

<BIB> = 1 ICk12 = 1 . 
k 

(3) 

The imaginary part of the elastic amplitude is 

<BlImTlB> = 1 ICkl*tk : <t> . (4) 
k 

In words, it is given by the average over absorption coefficients, which are 

weighted according to their probability of occurence in the particle 1 B >. The total 

cross section, and the elastic cross section (ignoring any contribution from the real 

part) are given by 

dotot/d2$ = 2ct > 

dael/d2b’ = < t>2 

(5) 

(6) 

The cross section for diffractive production, with elastic scattering removed, 

is 

dodiff/dQ = 1 I <JI k I ImT IB>I 2 - &,,/d% 
k 

= lCk12tk2- 1 kk12tk 2 
C k 1 
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Hence inelastic diffraction is proportional to the dispersion <(t - <t >)2> in cross 

sections for the diagonal channels. Eqs. (5)~(7) imply YDtot -de, - odiff = 

<t> - <t2>. Hence the requirement 0 ‘tk _ < I for the absorption probabilities 

leads to the upper bound odiff + ue,z hotot. 2,3,6 The bound is saturated if each 

tk is either completely transparent or fully absorbed, so that <t > = < t2 >. 

Our basic assumption is that the eigenstates of diffraction are parton states, 

so Eq. (1) takes the form 

IB> = d%+yiCNdil I..., gN; yl ,..., y,) 

x Ig 1 ,-:bN; Y, ,..., YN’ . (8) 

The labels in CN refer to impact parameters and rapidities of the wee partons. The 

large-momentum parton labels are not indicated explicitly, since these partons 

have negligible probability to interact with the target. A sum over those labels is 

implicit whenever matrix elements are calculated. We assume for simplicity that 

the parton interactions are independent of spin. The impact parameter variables gi 

are defined relative to the impact parameter of the incident particle. Hence a sum 
+ 

over all of the partons would yield g xibi = 0; but the contribution of the wee 

partons to this sum is negligible, so it provides no constraint on them. 

For simplicity, we shall consider a model in which the wee partons are not 

correlated with each other. The total probability associated with N wee partons is 

then given by a Poisson distribution, with mean number G2. We have 

IC 6 N l’“&; Yl,..., y,) I 2 

= e - G2(C2N,N!) ‘;: 1 Ci$, yi) I2 
i=l 

, (9a) 

where 
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f d2gidyi 1 C&i,yi)j * = I . (Yb) 

Next, we calculate the probability of a given parton state to interact with the 

target. If the probability for a parton i to interact is ri, then the probability for it 
N 

not to interact is 1 - ri; the probability for N partons not to interact is II (I --T i); - 
i=l 

and hence the probability for one or more of N partons to interact is 
N 

1 - /I1 (1 -Ti). We have calculated this quantity using the “conservation of 

probability” explicitly. Our results therefore depend directly on s-channel 

unitarity. 

Our optical model is now completely specified. To summarize it, we have 

independent wee-parton states I$l,...,gN; yl, . . ..yN>. which appear in the incident 

particle with probability 

e -G2C2N/N! ; Idi, yi) I* d2gidyi , 
i=l 

(10) 

and which interact with the target with probability 

I’“&; y, 
N 

,...,y,;i;) = 1 - II 
C 

(II) 
i=l 

where b’ is the impact parameter of the incident hadron, and T (3,~) is the 

interaction probability for a single parton. 

The cross sections as a function of impact parameter are determined by 

moments of the absorption spectrum according to Eqs. (5)~(7). Because the wee 

parton distributions have been assumed to be independent, these moments take on a 

simple eikonal form: 

<t> = 1 -e-G2’T> , (12) 

ct*>- <t> 2 = e -zc* CT> (e+G*<T * > -1) 9 (13) 
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where 

CT’ > = jd*i;IdyI[ &I, y,)j*[r(;I + $, y,)ln (14) 

are moments of the single-particle interaction probability at impact parameter g. 

The parton states, which are eigenstates for diffraction, are the same at all 

values of the overall impact parameter b: Equations analogous to (6) and (7) 

therefore hold for the momentum-space amplitudes, which are two-dimensional 

Fourier transforms of the impact parameter amplitudes. In this way, we obtain 

doe,/d2; = I 
MT* 

<;>* 

2’ +<;* ciJ diff’d q = ((,2 >-<;>*) , 

where 

< ;j > = Nio e-G2(G2N/N!) ?I d*$.dy. 
i=l I 1 

x { Jd*b’ eiq+*‘[l - i, (1 -T (b; + gz 

(15) 

(16) 

c$, Yi) I2 

Ql 1 j . (17) 

The averages needed for Eqs. (15) and (16) again take an eikonal form, and can be 

simplified to 

+-t 
<;> = fd;Hbeiqab<t> f (18) 

where <t> is given by Eqs. (12) and (14); and 

<;*,- <;>* = J d2;d2$ .iq’. (6 - bi 

x e -G*[ <;(g) >+<; (b’)> Ice c? <r(bj r(G) > 
-1) , (19) 
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where r(z) is given by Eq. (13) and 

<r&(b:) > = Id2$dyl I&,, yI) I*&, +6, y,)$ ++b’, yl) . (20) 

Hence we can calculate the differential cross section Ido/(dtdm*) dm*-except for 

possible tmin effects which we neglect. 

This completes the formalism of the optical model. Given G*, which 

specifies the average number of wee partons; 1 CC& y)( *, which specifies the 

single-parton probability distribution; and T(& y), which specifies the single-parton 

interaction probability, we can calculate the elastic and diffractive cross sections 

versus impact parameter, using Eqs. (5), (6), (12), (13); or versus momentum 

transfer, using Eqs. (15), (161, (IS), (19). 

III. SPECIFIC MODEL 

In this Section, we choose explicit forms for the functions which characterize 

our optical model. We choose the numerical constants in these forms according to 

physical arguments, and in accord with the known elastic amplitude. With all 

parameters of the theory thus determined, we predict the inelastic diffractive 

cross section, and find that it agrees with the observed magnitude and momentum 

transfer dependence. 

A detailed fit to elastic and inelastic diffractive data would be inappropriate, 

in view of the simplifying assumptions built into the optical potential approach. 

Our purpose here is rather to investigate whether the parton viewpoint correctly 

accounts for the behavior of inelastic diffraction “semiquantitatively,” without the 

aid of adjustable parameters or unmotivated assumptions. The parameters in our 

model are entirely determined from the parton point of view, together with 

information from elastic scattering. 
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To describe the single wee parton probability distribution at a given energy, 

we choose 

in Eq. (9a). The normalization K = 1/(2*6h) is required by Eq. (9b). Thus we have 

three parameters to describe the wee-parton distribution: G*, the average number; 

X , the width in rapidity; and 8, the mean square distance in impact parameter from 

the hadron which produced them. 

To describe the interaction probability of a single wee parton, we choose 

r&, y) q A e- lylla-~*/Y 

in Eq. (II). Thus we have three more parameters: A, the maximum interaction 

probability, where 0 <A <I; A, the range in rapidity; Y, the range in impact 

parameter. 

Our model appears to have six parameters; but actually has only five because, 

when the integrals over parton rapidities are carried out, the parameters c1 and X 

enter only as their ratio. We choose the parameters as follows. We set A = 1, its 

maximum possible value, because the short-range parton interaction is expected to 

be very strong. We set o/x = 2.0 and y/B = 2.0 because the range in y and b of the 

optical potential includes effects due both to the target particle wave function and 

due to the parton-parton interaction, so it should be somewhat larger than the 

range of the beam particle wave function alone. We shall later vary the values of 

these three parameters over a wide range and study how our results depend on 

these parameters. 

We choose the remaining two parameters of the model to obtain utot = 43 mb 

and o e, = 8.7 mb, which are appropriate to pp scattering at &?= 53 GeV.” In this 

way, we find 6 = 6.9 GeV-*; and G* = 2.93. 
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With the model parameters thus determined, we calculate the cross section 

for beam dissociation and find--hot damn!--3.2 mb. This result is large enough to 

agree with experiments, which report 2.5-3.5 mb (i.e. 5-7 mb for beam dissociation 

+ target dissociation + double dissociation). II 

The impact parameter dependence of the cross sections are shown in Fig. 1. 

We see that the cross section for inelastic diffraction is strikingly different in 

shape from that of elastic scattering. The elastic cross section is roughly Gaussian, 

while the inelastic diffractive cross section is much more spread out and actually 

peaks away from b = 0. We also note that the diffractive cross section lies 

everywhere below the unitarity bound Kotot (b) - o,,(b). This was of course to be 

expected, since our model is based on the very unitarity considerations which lead 

to the bound. 

Inelastic diffraction arises from fluctuations in the cross sections for the 

diagonal states at each impact parameter. These fluctuations result from 

variations in the number N; rapidities yi; and impact parameters bi of the wee 

partons. We can use our model to estimate the relative contributions from these 

three sources of fluctuations. This is done as follows: 

(1) To observe the effect of the yi-fluctuations, we look at what happens 

when they are removed. This is easily done by averaging over yi before calculating 

the dispersion in the diagonal cross sections--i.e. using 

CT “(b)> + fd*b:, [fdq Id,, y,)l*~(i;, +‘fb, y,)l” (23) 
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in place of Eq. (14). This leaves the first moment CT (b)>, and with it the elastic 

amplitude, unchanged. But it reduces odiff from 6.47 mb to 5.67 mb. Thus the yi- 

fluctuations contribute only about 12% to odiff in this model. By subtracting the 

modified dadiff/d2bi from the complete one, we can infer the b-dependence of the 

yi-fluctuation effect. This is done in Fig. 2. We see that the cross section due to 

yi-fluctuations is more centrally distributed than the total diffractive inelastic 

cross-section, although not quite as central as the elastic cross section shown in 

Fig. 1. 

(2) The effect of the Ifi-fluctuations can similarly be observed, by averaging 

over 5 i before calculating the dispersion. That is, we replace Eq. (14) by 

<-c”(b)> + fdq[ d*$ Id,, Y,) l*T($ +%, y,ll n . (241 

This reduces udiff from 6.47 mb to 3.47 mb. Thus the $-fluctuations account for 

about 46% of odiff. To estimate the b-dependence of the $-fluctuation 

contribution we proceed as we did with the yi-fluctuations, and subtract the 

modified cbdiff/d2$ from the complete one. The result, shown in Fig. 2, is an 

extremely peripheral distribution which peaks near b = 0.8 fm. 

(3) The contribution of N-fluctuations can be seen by averaging over bothb. 
I 

and yi before calculating the dispersion, so that <T “(b)> is replaced by <T (b)> n. 

This again preserves the fit to elastic scattering. It reduces udiff to 3.04 mb. Thus 

the N-fluctuations contribute about 47% of the inelastic diffractive cross section. 

The b-distribution of the N-fluctuation, shown in Fig. 2., is quite central in shape. 
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(4) The above contributions to udiff are not strictly additive--even though we 

assume no correlations between $, yi and N in the wave function. Our analysis 

based on eliminating their contributions one at a time is nevertheless reasonable. 

As a check of this, we note that the three contributions estimated above add up to 

105%, which is reasonably close to 1’00%. Furthermore, we have repeated the 

calculations for various permutations of the order in which the various fluctuations 

were eliminated, and obtained essentially no changes in the results. We thus 

conclude that the contribution to diffraction due to y.- &- and N-fluctuations is I’ I’ 

approximately IO%, 45% and 45%, respectively. 

(5) A comparison of the yi-, <- and N-fluctuation components to dissociation 

shown in Fig. 2 teaches us that the peripheral shape of the total dissociation cross 

section is mainly due to the large and very peripheral zi-fluctuation component. 

The spectrum of absorption probabilities for various impact parameters is 

shown in Fig. 3. Note that these probabilities have already been averaged over the 

target configurations (this was implicitly done when we replaced the target by a 

homogeneous optical potential). If both the beam and the target were described in 

terms of partons, the full non-smeared probabilities would then be even more 

spread out and e.g. the b = 0.6 fm distribution would be strongly doubled-peaked in 

agreement with the analysis of reference 6. 

The distribution of eigenchannel cross sections is shown in Fig. 4. One sees 

that the 43 mb cross section which is observed in pp scattering at r’?= 53 GeV is 

actually an average over cross sections for parton configurations which vary 

enormously. Now, Eq. (16), together with the optical theorem, gives us: 

dadiff/d2$ 
13 = 0 

= < 2, - a>* . (25) 
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From Fig. 4 we see that the main contribution to the very large dispersion of the 

total cross section spectrum comes from the variation in the number of wee 

partons. We may thus anticipate that the small-t dissociation is mainly due to 

N-fluctuations. 

The momentum transfer distribution of the beam dissociation cross section is 

shown in Fig. 5. The data, which come from a CERN ISR experiment,ll have been 

integrated over the x-range 0.95 < Ix j < 1.0 of the target proton. We see that the 

model prediction is in excellent agreement with experiments, both in magnitude 

and in shape. The predicted value for the forward slope is about 6.9 GeV -2 . 

The decomposition of the diffractive cross section dodiff/d2G into its various 

components can be carried out in the same way as for do diff /d%. From the result, 

shown in Fig. 5, we learn two important lessons. Firstly, the ci-fluctuation 

component is very broad and dominates the total spectrum at large momentum 

transfer. It peaks around t =-0.1 GeV* and nearly vanishes in the forward direction. 

The reason for this forward dip will be discussed in the next section. Secondly, 

small-t dissociation is seen to be dominated by the large and very steep 

(slope z 12.2 GeV-*) N-fluctuation, in agreement with our expectation based on the 

eigen cross section spectrum of Fig. 3. (The reader may be surprised that the gi- 

fluctuations make both dodiff/d2g and dodiff/dt more broad; however, these cross 

sections contain sums of squares of many amplitudes, and are therefore not related 

directly by Fourier transformation.) 
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We shall now examine how sensitively our results depend on the values chosen 

for the parameters. Let us begin by looking at some extremes. By choosing 

G2 = 2.6, A = 0.75, B = 6 GeV-2, y = 12 GeVS2, A/ a= 0, we obtain a model which 

has no yi-fluctuations; but which has elastic and diffractive inelastic cross sections 

which are nearly identical to those of our original choice. Hence the 

yi-fluctuations are not essential to produce agreement with experiment. This is, of 

course, not a surprising result since we have seen that the yi-fluctuations 

contributed no more than about 10% of the total dissociation cross section and, 

furthermore, the yi-fluctuation component didn’t dominate the spectra in any t- 

range. 

Next, by choosing G2 = 1.53, y= 18 GeVS2, B=O, h/o = 0, we obtain a model 

which has the same elastic amplitude and the same integrated cross section 

odiff = 6.47 mb as our original model; but which has no yi- or$-fluctuations. This 

model disagrees violently with experiment, however, and thereby demonstrates that 

$-fluctuations must not be ignored. This disagreement appears mainly in the shape 

of dadiff/dt: the small-t slope becomes A = 12 GeV -2 , which is nearly twice the 

experimental value. 

As a final extreme, we could replace the Poisson distribution in the number of 

wee partons by a fixed number N. With 8 = 0, w e could then obtain a model which 

has only $-fluctuations. It would disagree with experiment in the opposite way: 

the diffractive inelastic cross section would have a dip at zero momentum transfer 

which is not observed. 

These considerations demonstrate that &i-fluctuations are responsible for 

about y2 of the inelastic diffractive cross section. Models which attempt to 

approximate this fraction by 0 or 1 will certainly fail. 
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Let us now discuss less extreme variations of the model parameters. We 

repeated all our calculations for numerous combinations of the values of the 

parameters, varying A between 0.7 and 1, y/B between 1.5 and 3.0 and a/X 

between 1.5 and 3.0. In each case the remaining two parameters of the model were 

set by fitting elastic scattering. The average number of wee partons varied 

between 2.3 and 4.1. The predicted diffractive cross section varied between 7.5 

and 5.5 mb. The relative contributions of the three types of fluctuations into 

dissociation proved also to be quite stable. From this exercise we can assign the 

following values and errors for these contributions: yi-, $- and N-fluctuations 

contribute 10 *5%, 45+10% and 45 ilO%, respectively. The predicted differential 

cross section dodiff/dt stayed always in rough agreement with experiment. 

Altogether, the results turned out to be surprisingly stable with respect to the 

variation of the model prameters not determined by elastic scattering. This is an 

extremely gratifying result since it means that the very good agreement between 

our predictions and experiment is not a “numerical accident” due to a clever choice 

of parameter values but follows from the general structure of the model. 
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IV. THE NATURE OF FORWARD DISSOCIATION 

The behavior of inelastic diffraction spectra near the forward direction has 

received much theoretical attention in the past. Before conclusive high-energy 

data became available, many theorists anticipated that the cross section of 

diffraction dissociation should vanish (or at least turn over) in the forward 

direction. The issue received special attention in 1971-73 in relation to the 

Mueller-Regge formulation of diffraction theory and to the question of decoupling 

of the Triple-Pomeron. However, as the reader may well recall, the forward zero 

was predicted already earlier from much simpler theoretical arguments. It follows 

e.g. in the quark model approaches to diffraction in the single scattering 

approximation to Glauber theory. 1’ When experiments showed no dip but rather a 

large forward peak, it was thus an embarrassment not only to Reggeists, but also to 

followers of the additive quark model approach combined with the Glauber 

theory. 12 

In the previous Section we saw that the differential cross section predicted by 

our model was in good agreement with experiment, including the absence of a dip 

near t = 0. Furthermore, we observed that in the model, the large forward cross 

section was due to rapidity and multiplicity fluctuations of the wee partons. The 

impact parameter fluctuations gave rise to a contribution which turned over and 

was very small at t = 0. We shall now elaborate on this point and clarify why the 

additive quark model approach goes completely astray in its predictions concerning 

the t-dependence of the dissociation spectra. 

Let us briefly recall the theoretical argument for the forward zero in the 

additive quark model. To minimize inessential complications consider scattering of 

a composite system of N constituents in an external field. In the Born 

approximation to non-relativistic Glauber theory, the amplitude for the reaction 

state A + state C is 
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T,?,&~) = kf, Tk(;L) FACtk)“; ) , 

where T (4’ k L I is the elastic scattering amplitude of the constituent k, and 
.+ 

FAC(k)kj”‘) = qtc le 
2 lql’ k I~J~> (27) 

is the overlap integral of the states A and C. In the forward direction, : I = 0, and 

the overlap integral reduces to the orthogonality integral of the two states: 

FAC (k)q=O) = <$cI$A> = &A ) (28) 

which is zero for two orthogonal states. 

Although the above derivation is greatly simplified, it does grasp the essential 

physics that underlies the forward zero in the framework of the additive quark 

model. The literature abounds with arguments that relativistic effects (or, 

equivalently, tmin effects) would invalidate the above derivation and remove the 

forward zero,13 but it is fairly easy to see that these arguments are based on 

inconsistent uses of relativity. This point was emphasized by BelLi 

An analysis of the additive quark model within our formalism sheds more light 

on the physical origin of the forward zero. Consider the scattering of a nucleon 

consisting of three quarks with fractional momenta x,, x 2’ x3 and impact 

parameters b’ i, c2, b;, respectively. Since the number of constituents is fixed 

(N = 3), the wave function has no N-fluctuations. The wave function does have 

fluctuations in the longitudinal momenta but, in the approximation of energy in- 

dependent scattering of the quarks, the absorption is independent of the xi’s and 

thus longitudinal fluctuations do not give rise to dispersion in absorption and to 

diffraction dissociation. Hence we see that, in this model, all diffraction 
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dissociation originates from gi-fluctuations. But, in the Born approximation, the 

total cross section of a particular wave function configuration is independent of the 

impact parameters of the quarks and equal to the number of quarks times the total 

quark cross section 

atot 
B;A. .fd2j:utot’I~, -“I, . ..) = 30yot . (28) 

In other words, the eigen cross section spectrum in the single scattering 

approximation consists of a single 6-peak at u = 3~:~~. Eq. (25) tells us that the 

forward dissociation cross section is proportional to the dispersion-squared of the 

eigen cross section spectrum. The width of a delta-peak is zero, and the forward 

dissociation cross section thus vanishes. 

Now consider our approach. As we saw in the previous Section, the 

contribution to dissociation due to the gi-fluctuations peaked away from t = 0 and 

was very small in the forward direction. This forward dip is nothing but the above 

orthogonality zero, slightly filled in by multiple scattering contributions. However, 

the total dissociation cross section is large and peaks near t = 0, since the 

contributions due to the N- and yi-fluctuations present in our model, but absent in 

the additive quark model, are sizeable and sharply peaked near t = 0. 

We strongly believe that our above discussion grasps the essense of the failure 

of the additive quark model in describing diffraction dissociation. The wave 

function of a fast moving hadron is much more complicated than the naive (non- 

relativistic as well as relativistic) quark model asserts. Since impact parameter 

fluctuations cannot give rise to a sizeable forward dissociation cross section, the 

experimentally observed large cross section proves that the absorption also depends 

strongly on degrees of freedom in the wave function which are other than the 

transverse ones. 
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An interesting feature of the dissociation contribution generated by the 

ibi-fluctuations is that its impact parameter distribution is much more peripheral 

than those of the yi- and N-fluctuation contributions and that of elastic scattering. 

At first sight one might think that this peripherality is generated by multiple 

scattering contributions. A closer look at the problem, however, shows that this is 

not so: the peripherality is already present at the Born term level. In Fig. 6 we 

present a simple Gedankenexperiment which illustrates the point. One sees from 

this figure that, while elastic scattering is large where the magnitude of the 

absorption is large, diffraction dissociation due to the c,-fluctuations is large 

where the derivative of the absorption is large. Since the absorption is most 

rapidly varying at the edge of the scattering region, the peripheral distribution of 

the cl-fluctuation contributions follows. 

We should add one more explanation about the properties of the $- 

fluctuation contribution to dissociation. We concluded above that, although the b- 

space distribution of this contribution should be peripheral, its momentum space 

distribution cl& near t = 0. Such a behavior seems to contradict the intuitive idea 

that peripheral &space distributions should correspond to momentum space 

distributions which are sharply peaked and maximal in the forward direction. The 

solution to this paradox is very simple. The Fourier-Bessel transformations 

between impact parameter space and momentum space are of course transfor- 

mations of amplitudes and not of cross sections. The dissociation amplitudes 

generated by the I?i-fluctuations peak at the edge of the interaction region (and 

thus give rise to a peripheral cross section), but they are rapidly varying and change 

s& in nearby regions. These oscillations of the %-space amplitudes give rise to 

large cancellations in the Fourier-Bessel integrals and produce the small-t dip. 
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V. CONCLUSIONS AND DISCUSSION 

In the parton approach pursued in this paper, the parton-parton interactions 

were assumed to be dominantly short-range interactions in rapidity space. From 

this assumption, and from some general knowledge of the parton distribution 

functions, two great simplifications of our analysis resulted. Firstly, it was seen 

that the global properties of diffraction depended on the distribution and 

interactions of the very slow “wee” partons only. Thus, no assumptions were 

needed about the structure of the hadrons’ wave functions in the dynamically more 

complicated finitex region. Secondly, we found that, as long as we were 

attempting to calculate elastic and total inelastic diffractive cross sections only, 

no detailed knowledge of the parton-parton forces was needed. It is a most 

beautiful property of the shadow dynamics that these two cross sections depend on 

the first two moments of the absorption spectrum only. Thus, as long as we have 

included the right degrees of freedom in the wave functions and described the 

inter-parton forces properly in the average, our analysis should provide reasonable 

results. 

We adopted simple phenomenological parametrizations for the wee-parton 

distributions and the parton interaction probability, fixed two of the five model 

parameters by fitting otot and o el, and carried out the calculations for various 

values of the remaining three parameters. The most important results of our 

analysis can be summarized as follows: 

(A) The model describes elastic scattering fairly well. This is not surprising, 

since d o,l/dt is experimentally nearly exponential, and thus can be described rather 

well in terms of the two parameters u tot and u e,, whose measured values were 

used as input to our analysis. 

(8) The model predicts 2.5-3.5 mb for the beam dissociation cross section in 

proton-proton scattering in the Fermilab-CERN ISR energy range. This result is in 

excellent agreement with experiments. 
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(C) The cspace distribution of the inelastic diffractive cross section is found 

to be much more peripheral than that of elastic scattering. It is peaked away from 

b = 0, near b = 0.5 fm. 

(D) The inelastic diffractive cross section has been separated into contri- 

butions due to rapidity, impact parameter and multiplicity fluctuations of the wee 

partons. The relative contributions of these three types of fluctuations are 

approximately IO%, 45% and 45%, respectively. The g-space distributions of the 

yi- and N-fluctuation contributions are found to be central, whereas the gi- 

fluctuation contribution is strongly peripheral. 

(E) We observed that the peripherality of the $-fluctuation component was 

not primarily due to multiple scattering effects but rather a property of single 

scattering amplitudes. A simple Gedankenexperiment was presented which 

demonstrated why this is the case. 

(F) The forward value and the slope of dudiff/dt are correctly predicted by 

the model. This agreement is not at all trivial, since the slope of dudiff/dt 

(A z 6 GeVw2) is much smaller than that of elastic scattering (A Z 11 GeVm2). 

CC) We decomposed dudiff/dt into contributions due to the yi-, &,- and 

N-fluctuations. The gi-fluctuation contribution was found to dominate at large 

momentum transfers, to peak around t q -0.1 GeV2, and to be very small in the 

forward direction. The N- and yi-fluctuation contributions peaked sharply in the 

forward direction and dominated the scattering in the region near t = 0. 

(H) We clarified the reason for the catastrophic failure of the additive quark 

models (relativistic as well as non-relativistic) in predicting the t-dependence of 

diffractive production. 
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Lest the reader be carried away by our good results, we now discuss some of 

the limitations of the model, as it now stands. Firstly, all our calculations have 

been inclusive, i.e. we have summed over all the channels of diffractive production. 

This was required by the unitarity formalism developed in Section II. Thus, we 

cannot predict the internal properties of the diffractively produced states. Even 

the basic questions of the mass spectrum of the excited states is not addressed--to 

say nothing of more detailed properties of the produced states such as the mass- 

slope correlation, spin and helicity dependence, etc. 

A second limitation of the present formulation of the model is that we 

parametrized the wee parton distribution and the parton-parton interactions 

independently. However, Lorentz invariance requires that what in one Lorentz 

frame appears as an interaction between a parton belonging to the beam hadron and 

another belonging to the target hadron, will in another Lorentz frame become an 

interaction between two partons belonging both to the wave function of the same 

hadron. Thus the wee parton distribution and the parton-parton amplitude are not 

independent quantities. In principle, it should be possible to derive the wee-parton 

distribution corresponding to any given parton-parton amplitude. Since we don’t 

know how to do this, but have a fairly clear idea what the answer must look like, 

we guessed the answer directly and provided a phenomenological parametrization 

for it. We do not know if our wee parton distribution and parton-parton amplitude 

are theoretically consistent. However, since our results are quite independent of 

the values of the parameters of the model, we believe that this is not a serious 

objection to our model. 
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A third difficulty of the present formulation of our model, which is related to 

the previous one, is the following: We described the target hadron by a 

homogeneous optical potential. It should be possible to derive this potential from a 

convolution of the target parton distribution with the parton-parton amplitude. We 

have done this, and learned that our assumption that the wee partons are 

uncorrelated runs into trouble either with Lorentz invariance or with exact s- 

channel unitarity. However, we believe that a more realistic parametrization of 

the wee parton distribution, which would include correlations between partons, 

would remove the theoretical inconsistency without influencing our numerical 

results significantly. 

We wish to mention here a more detailed--but highly speculative--picture 

which could perhaps underly our work. In that picture, a fast-moving nucleon 

consists of three valence quarks together with multiperipheral chains of sea- 

partons, which are emitted at random by the valence quarks with coupling constant 

SC (see Fig. 7). It may be meaningful to neglect the interactions between the 

chains - including processes in which one chain splits into two, or in which two fuse 

into one - and assume that each chain supplies at most one wee parton. In this 

way, the number of wee partons and the rapidity distribution for a single parton 

would correspond to independent fluctuations, as assumed in our model. 

Next we briefly compare our analysis with a recent study carried out by 

FiaIkowski and Van Hove. 15 Inspired by the results of Ref. (6), these authors 

calculated inelastic diffraction in a model in which the internal structure of a fast 

moving nucleon was described in terms of three valence quarks and glue, and the 

glue was taken to be the active element in non-diffractive hadronic collisions at 

high energy. ” The absorption probability was assumed to depend on the fractional 

momenta x 
g’ Xgl’ and the relative impact parameter 2 of the two colliding 

tz 

“glueballs” as follows: 
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t(xg, xg’, XgI = 1 - exp [ -dx vi;,1 t 
g’ xg’ g 

(30a) 

where 

s2(xg, xg’, gg’ = x Gg)xgxgl (30b) 

The probability distributions for xg and x 
g 

’ were assumed to be flat, and the impact 

parameter distributions of the glue center-of-momentum relative to the particle 

center-of-momentum were described by Gaussians. The function X (zg) was then 

determined by fitting the model to CERN ISR data on pp elastic scattering. The 

total inelastic diffractive cross section predicted by the model ranges from 2.7 mb 

to 5.1 mb, to be compared with experimental estimates of 5-8 mb. 

It should be clear that our analysis is quite similar both in spirit and in its 

practical formulation to that of Fialkowski and Van Hove. The ii-fluctuation 

component of dissociation is nearly identically described by the two approaches. In 

the longitudinal and density fluctuations, however, the two models differ in an 

important way. In the approach of FiaIkowski and Van Hove, the total probability 

of absorption was assumed to depend strongly on the total momentum carried by 

the glue (see Eq. (30)). Since x 
!2 

= 1 - x, where x is the total momentum of the 

three valence quarks, we see that the probability of absorption depends strongly on 

the momenta of the (fast) valence quarks and that the model thus contains strong 

long range correlations. Our model, on the other hand, is built upon the assumption 

that hadrons’ wave functions are dominantly short-range correlated, and thus the 

fluctuations in the wee region do not depend strongly on how the total momentum 

is shared between the valence quarks and the fast sea partons which carry the 

remaining momentum. Our model does contain some long-range correlations, but 

their amount is much smaller than in the approach of Fiaikowski and Van Hove. 
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The present analysis can be extended in many different directions. We 

mention here a few possibilities: 

i) By varying the radii and densities of the beam and target hadrons, one 

may investigate the factorization properties of diffraction scattering. 

ii) The model may be applied to scattering on nuclei. In particular, one 

may address questions such as: How important are inelastic shadowing 

effects in scattering on nuclei? How “black” are heavy nuclei? From 

studies of the A-dependence of diffraction dissociation in hadron- 

nucleus collisions, estimates have been obtained for the total cross 

sections of unstable hadronic states scattering on nucleons. How much 

do these extracted “cross sections” have to do with the real excited 

state--nucleon cross sections? We have analyzed some of these 

problems, and our results will be forthcoming. 

iii) How to extend the model to study the excitation of exclusive final 

states? It seems to us that, in order to solve this problem, one must 

develop a much better understanding of the parton wave functions for 

fast moving hadrons than what we now possess--including some 

understanding of their phases. Even a crude solution of this problem 

would be very useful. One could study how the dissociation spectra 

depend on the mass, spin and helicity of the excited states, what is the 

physics underlying the mass-slope correlation etc., and as a result, 

would obtain important new insights into the dynamics of diffraction 

dissociation. 
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iv) On the more theoretical side, many possibilities for further research are 

open. It would be useful to obtain better understanding of our 

somewhat intuitive hypothesis that the parton basis is the eigenbasis of 

diffraction. A clarification of how the wee-parton distribution depends 

on the parton-parton amplitude would be instructive. One could try to 

derive the parton amplitudes and the parton distribution functions from 

a microscopic dynamical theory of hadronic matter such as quantum 

chromodynamics. Finally, an understanding of the Lorentz transfor- 

mation properties of hadronic wave functions would be very useful in 

connection with the above problem iii). 

In conclusion, we wish to re-emphasize the most important aspect of our 

analysis. By studying the scattering in terms of normalized wave functions and 

unitary absorption probabilities, we make direct use of s-channel unitarity, i.e., of 

the shadow-scattering origin of diffraction. Our approach is thus quite different 

from conventional approaches to diffraction, in which detailed models are built for 

the “Born term” amplitudes, and these amplitudes are then “unitarized” by some 

iteration prescription. We have shown in this paper that s-channel unitarity plus a 

rather modest amount of dynamical input about the internal hadron structure and 

the nature of the constituent forces provides a good description of the global 

properties of diffraction scattering. 
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Fig. I: 

Fig. 2: 

Fig. 3: 

FIGURE CAPTIONS 

The impact parameter dependence of inelastic diffraction 

predicted by our model (solid curve). It corresponds to an 

integrated cross section udiff = 6.5 mb, which is consistent 

with experiment.4 It is also consistent with the bound 

‘diff’ Y2utof-uel (r!.l/ol which follows from unitarity. 

Observe that inelastic diffraction is much more peripheral in 

impact parameter than elastic scattering c-.-J or the non- 

diffractive cross section otot- uel -odiff (..-..-I. The param- 

eters of the model were chosen so that due,/dt approximates 

the known elastic scattering at fi = 53 GeV. 

The diffractive cross section as a function of impact param- 

eter, repeated from Fig. I; and the contributions to it from 

fluctuations in the number (N), rapidities (yi), and relative 

impact parameters (jtbi) of the wee partons. The ci-fluctuations 

are responsible for the very peripheral nature of odiff(b), and 

contribute about % of the integrated value 6.5 mb. 

The distribution of interaction probabilities at various impact 

parameters. The large dispersion in these probabilities is 

responsible for the large cross section for beam dissociation, 

which is observed experimentally. Note that these “eigen- 

amplitudes” have already been averaged over the target 

configurations. In our model, there is a component of the 

parton wave function which contains zero wee partons, and 

which therefore does not interact. It accounts for e -G2 
= 5.4% 

of the wave function. In order to display its effect, these 

curves are averaged in the region from 0 to 0.05. 
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Fig. 4: 

Fig. 5: 

Fig. 6: 

The distribution of total cross sections for the partons states, 

which are the eigenstates of diffraction in our model (solid 

curve); and the contributions to it from wave function 

components with 0, 1, 2, 3, or 4 wee partons (dashed curves). 

In the region O-5 mb, we display the average for the sum in 

order to make visible the x5.4% fraction with o = 0. 

The momentum transfer dependence of beam dissociation, 

Ido/(dtdm2) dm2 for pp+ p*p, predicted by our model. The 

experimental data are from Ref. 4. Also shown is a 

decomposition of the full cross section into contributions due 

to fluctuations in the number (N), rapidities (yi), and relative 

impact parameters (ci) of the wee partons. The N-fluctuation 

contribution is seen to dominate near t = 0, and the gi- 

fluctuation component at large t-values. 

A Gedankenexperiment illustrating the physical origin of the 

peripherality of the $-fluctuation component. A harmonic 

oscillator, initially in its ground state IQ,>, scatters from a 

very wide and very thin screen of hadronic matter. Because 

the screen is very thin, only single scattering contributions are 

important. In (a), the oscillator hits the interior of the screen. 

If the scattering probability is independent of energy, then the 

wave function is absorbed uniformly. Hence no diffraction 

dissociation occurs. In (b), the oscillator hits the edge of the 

screen. The final state wave function is distorted, and 

therefore contains excited components, i.e. diffraction dissoci- 

ation takes place. 
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Fig. 7: Schematic illustration of a fast-moving proton approaching an 

optical potential based on a multiperipheral point of view. The 

proton structure is described in terms of three valence quarks 

plus multiperipheral chains of sea partons. The full wave 

function is a superposition of components with varying number 

of chains, each of which contains a varying number of partons 

at various impact parameters and rapidities. The total impact 

parameter of the collision, 6, is determined by the fast 

partons. Out of the three chains shown, only chain number 1 

has a chance to interact with the target. Chain number 2 will 

pass the target out of its range, and chain number 3 contains 

non-wee partons only and will thus pass through the target 

without being capable of interacting with it. 
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